Feedback Effects of Credit Ratings

Gustavo Manso

MIT Sloan School of Management

CREDIT 2011
Feedback Effects of Credit Ratings

- *Independent* opinion on the credit quality of issuers?
Feedback Effects of Credit Ratings

- *Independent* opinion on the credit quality of issuers?

- Credit ratings themselves affect credit quality of issuers.
  
  - information.
  
  - regulation.
  
  - rating triggers.
Example: Enron’s Credit-Sensitive Notes


<table>
<thead>
<tr>
<th>Ratings*</th>
<th>Moody’s</th>
<th>S&amp;P</th>
<th>Interest Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aaa</td>
<td>AAA</td>
<td></td>
<td>9.20%</td>
</tr>
<tr>
<td>Aa1 - Aa3</td>
<td>AA+ - AA-</td>
<td></td>
<td>9.30%</td>
</tr>
<tr>
<td>Baa1 - Baa3</td>
<td>BBB+ - BBB-</td>
<td></td>
<td>9.50%</td>
</tr>
<tr>
<td>Ba1</td>
<td>BB+</td>
<td></td>
<td>12.00%</td>
</tr>
<tr>
<td>Ba2</td>
<td>BB</td>
<td></td>
<td>12.50%</td>
</tr>
<tr>
<td>Ba3</td>
<td>BB-</td>
<td></td>
<td>13.00%</td>
</tr>
<tr>
<td>B1 or lower</td>
<td>B+ or lower</td>
<td></td>
<td>14.00%</td>
</tr>
</tbody>
</table>

*if ratings are split, the lower of S&P and Moody’s ratings is considered.
Outline of the Talk

1. The Model
2. Equilibrium in Markov Strategies
3. Social Welfare and Equilibrium Selection
4. Stability and the Credit-Cliff Dynamic
5. Competition Between Rating Agencies
6. Equilibrium Computation
7. Comparative Statics
8. Conclusion
Outline of the Talk

1. The Model
2. Equilibrium in Markov Strategies
3. Social Welfare and Equilibrium Selection
4. Stability and the Credit-Cliff Dynamic
5. Competition Between Rating Agencies
6. Equilibrium Computation
7. Comparative Statics
8. Conclusion
Firm generates non-negative after-tax cash flows $\delta_t$

$$d\delta_t = \mu(\delta_t)dt + \sigma(\delta_t)dB_t,$$

Debt in place promises a non-negative payment rate $C(R_t)$, which is decreasing in the credit rating $R_t$ of the borrower, where $R_t \in \{1, \ldots, I\}$, with 1 the lowest (“C” in S&P’s ranking) and $I$ the highest (“AAA” in S&P’s ranking).
Optimal Default Time

Given a rating process $R$, the firm’s optimal liquidation problem is

$$W_0 \equiv \sup_{\hat{\tau} \in \mathcal{T}} E \left[ \int_0^{\hat{\tau}} e^{-rt} \left( \delta_t - (1 - \theta) C(R_t) \right) dt \right].$$
The rating agency is concerned about its reputation, which depends on the accuracy of its ratings.

Given a default policy $\hat{\tau}$, a rating process $R$ is *accurate* if

$$R_t = i \text{ whenever } P(\hat{\tau} - t \leq T \mid \mathcal{F}_t) \in [G_i, G_{i-1}),$$

where $\{G_i\}_{i=0}^I$ with $G_0 = 1$, $G_I = 0$, and $G_i \geq G_{i+1}$ are the target rating transition thresholds.
An equilibrium \((\tau^*, R^*)\) is characterized by the following:

1. Given the rating process \(R^*\), the default policy \(\tau^*\) maximizes equity value.

2. Given the default policy \(\tau^*\), the rating process \(R^*\) is accurate.
Outline of the Talk

1. The Model
2. Equilibrium in Markov Strategies
3. Social Welfare and Equilibrium Selection
4. Stability and the Credit-Cliff Dynamic
5. Competition Between Rating Agencies
6. Equilibrium Computation
7. Comparative Statics
8. Conclusion
Markov Strategies

\[ \delta \]

\[ H_1 \]

\[ H_2 \]

\[ H_3 \]

\[ H_4 \]

\[ H_5 \]

\[ H_6 \]

\[ H_7 \]

\[ H_8 \]

\[ \delta_B \]

\[ t \]

AAA
AA
A
BBB
BB
B
CCC
CC
C

Gustavo Manso (MIT) Feedback Effects of Credit Ratings
Markov Strategies

\[ \delta \]

\[ H_8 \]
\[ H_7 \]
\[ H_6 \]
\[ H_5 \]
\[ H_4 \]
\[ H_3 \]
\[ H_2 \]
\[ H_1 \]

\[ \delta_B \]

\[ t \]

AAA
AA
A
BBB
BB
B
CCC
CC
C

Gustavo Manso (MIT) Feedback Effects of Credit Ratings
Markov Strategies

\[ \delta \]

\[ \delta_B \]

\[ \delta_t \]

AAA
AA
A
BBB
BB
B
CCC
CC
C
Optimal Default Threshold $\delta_B$

For a given Markov rating policy $H$, the ratings-based PSD obligation $C$ is equivalent to a step-up PSD obligation $C^H$. From Manso, Strulovici, and Tchistyi (2010), the equity value $W$ and optimal default threshold $\delta_B$ can be computed in the following way:

1. Determine the set of continuously differentiable functions that solve the following ODE

$$\frac{1}{2} \sigma^2(x) W''(x) + \mu(x) W'(x) - r W(x) + x - (1 - \theta) C^H(x) = 0. \quad (1)$$

at each of the intervals $[H_i, H_{i-1})$. It can be shown that any element of this set can be represented with two parameters, say $L^i_1$ and $L^i_2$.

2. Determine $\delta_B$, $L^i_1$, and $L^i_2$ using the following conditions:

- $W(\delta_B) = 0$ and $W'(\delta_B) = 0$.
- $W(H_{i-}) = W(H_{i+})$ and $W'(H_{i-}) = W'(H_{i+})$ for $i = 1, \ldots, l$.
- $W'$ is bounded.
Accurate Rating Transition Thresholds $H$

For a given default threshold $\delta_B$, the best-response rating transition thresholds $H$ are such that

$$P(\tau(\delta_B) - t \leq T | \delta_t = H_i) = G_i.$$

Because $P(\tau(\delta_B) - t \leq T | \delta_t)$ is strictly decreasing and continuous in $\delta_t$, the thresholds $H$ exist and are unique.
Proposition: The best-response default policy $\delta_B(H)$ is increasing in the rating transition thresholds $H$.

Proposition: The best-response rating policy $H(\delta_B)$ is increasing in the default threshold $\delta_B$. 
Theorem: The set $\mathcal{E}$ of Markov equilibria has a largest and a smallest equilibrium.
Equilibria of the Game

Optimal default boundary $\delta_B$

Rating transition threshold $H$

$H^{-1}(\cdot)$

$\delta_B(\cdot)$

$\hat{e}$

$\bar{e}$
Equilibria of the Game

Optimal default boundary $\delta_B$

Rating transition threshold $H$

$H^{-1}(\cdot)$

$\delta_B(\cdot)$

“tough-rating-agency equilibrium”

“soft-rating-agency equilibrium”

Gustavo Manso (MIT) Feedback Effects of Credit Ratings 16
Algorithm to Compute Equilibria

\[ H^{-1}(\cdot) \]

Optimal default boundary \( \delta_B \)

\[ \hat{e} \]

Rating transition threshold \( H \)

\[ \overline{e} \]

\( \delta_B(\cdot) \)
If $C$ is a fixed-coupon consol bond (i.e. $C(i) = c$ for all $i$), then the equilibrium is unique.
Consol Bond

Optimal default boundary $\delta_B$

Rating transition threshold $H$

$H^{-1}(\cdot)$

$\delta_B(\cdot)$

$e = \bar{e}$
Outline of the Talk

1. The Model
2. Equilibrium in Markov Strategies
3. Social Welfare and Equilibrium Selection
4. Stability and the Credit-Cliff Dynamic
5. Competition Between Rating Agencies
6. Equilibrium Computation
7. Comparative Statics
8. Conclusion
Proposition: Equilibria of the game are Pareto-ranked. The tough-rating-agency equilibrium is the worst equilibrium, while the soft-rating-agency equilibrium is the best equilibrium.
Difficult Problem for Rating Agencies

Standard and Poor’s Reaction

How is the vulnerability relating to rating triggers reflected all along in a company’s ratings? Ironically, it typically is not a rating determinant, given the circularity issues that would be posed. To lower a rating because we might lower it makes little sense – especially if that action would trip the trigger!

Republished three years later:

The vulnerability relating to rating triggers can be reflected all along in a company’s ratings. However, there are questions over circularity.

“Playing Out the Credit-Cliff Dynamic,” Standard and Poor’s, December 2001
Republished in October 2004
Difficult Problem for Rating Agencies

Moody’s Reaction

In conducting its stress case analysis for those issuers that have truly risky rating triggers such as ratings-based default or acceleration provisions, or “puts” in back-up lines, indentures, and counterparty agreements, Moody’s must assume that triggers which specify default or acceleration outcomes are set off, and the underlying debt is “put” and or availability under the back-up credit line goes away. This means that the issuer must have the wherewithal to survive such a downgrade and the consequences of the trigger.

“Moody’s Analysis of US Corporate Rating Triggers Heightens Need for Increased Disclosure,” Moody’s, July 2002
Negative Consequences of Stress-Test Approach

Optimal default boundary $\delta_B$

Rating transition threshold $H$

$H^{-1}(\cdot)$

$\delta_B(\cdot)$

$\delta_0$

$\hat{e}$

$\bar{e}$

$\hat{e}$
Negative Consequences of Stress-Test Approach

Optimal default boundary $\delta_B$

Rating transition threshold $H$

$H^{-1}(\cdot)$

$\delta_B(\cdot)$

$\delta_0$

stress-case scenario

$\hat{e}$

$\bar{e}$
Potential Solution: Issuer-Pay Model

- Issuer pays for being rated.
- Rating agencies become concerned about survival of the issuer.
- If fees from a particular issuer are small relative to reputation concerns, rating agencies will choose the soft-rating-agency equilibrium.
Outline of the Talk

1. The Model
2. Equilibrium in Markov Strategies
3. Social Welfare and Equilibrium Selection
4. Stability and the Credit-Cliff Dynamic
5. Competition Between Rating Agencies
6. Equilibrium Computation
7. Comparative Statics
8. Conclusion
Proposition: If the game has a unique Markov equilibrium, it is globally stable in terms of best-response dynamics.
Stability When the Equilibrium is Unique

Optimal default boundary $\delta_B$
Reaction to a Small Unanticipated Shock

$$H^{-1}(\cdot)$$

$$\delta_B(\cdot)$$

Optimal default boundary $$\delta_B$$

Rating transition threshold $$H$$
Outline of the Talk

1. The Model
2. Equilibrium in Markov Strategies
3. Social Welfare and Equilibrium Selection
4. Stability and the Credit-Cliff Dynamic
5. Competition Between Rating Agencies
6. Equilibrium Computation
7. Comparative Statics
8. Conclusion
Competition Between Rating Agencies

Same model as before except that there are two rating agencies.

- Objective of each rating agency is to have more accurate ratings than the other rating agency.

- The ratings-based PSD obligation $C$ promises payments $C(R^1_t, R^2_t)$ from the borrowing firm to the debtholders at each time $t$. 
Lemma: With a ratings-based PSD obligation $C$ whose coupon depends on $R^1_t$ and $R^2_t$, any equilibrium involves rating agencies choosing symmetric rating transition thresholds ($H^1 = H^2$). The firm default boundary $\delta_B$ and the rating transition thresholds $H^1$ or $H^2$ are in the equilibrium set $\mathcal{E}$ of the game with a single rating agency.
Wiemann (2010) checks 50 randomly selected contracts and finds:

- 22 contracts rely on the maximum rating.
- 20 contracts rely on the minimum rating.
- 8 contracts rely on an average rating.
Equilibria Under the Maximum and Minimum Criteria

Proposition: If the ratings-based PSD obligation $C$ relies on the minimum (maximum) of the ratings, then the unique Markov equilibrium of the game is the tough-rating-agency (soft-rating-agency) equilibrium.
Which Equilibrium Survives Under the Minimum Criterion?

\[ H^{-1}(\cdot) \]

\[ \delta_B(\cdot) \]

“tough-rating-agency equilibrium”

“soft-rating-agency equilibrium”

Optimal default boundary \( \delta_B \)

Rating transition threshold \( H \)
Which Equilibrium Survives Under the Minimum Criterion?

\[ H^{-1}(\cdot) \]

Optimal default boundary \( \delta_B \)

“soft-rating-agency equilibrium”

“tough-rating-agency equilibrium”

Rating transition threshold \( H \)
Which Equilibrium Survives Under the Minimum Criterion?

Optimal default boundary $\delta_B$

Rating transition threshold $H$

“soft-rating-agency equilibrium”

“tough-rating-agency equilibrium”

$H^{-1}(\cdot)$

$\delta_B(\cdot)$
Earlier this month, Standard & Poor’s lowered its credit rating on Chicago-based GATX Corp., which leases rail cars and aircraft. The reason? The company’s access to the commercial-paper market was curtailed, due to a downgrade by rival Moody’s, which cited concerns about volatility in the aircraft-leasing business.

Outline of the Talk

1. The Model
2. Equilibrium in Markov Strategies
3. Social Welfare and Equilibrium Selection
4. Stability and the Credit-Cliff Dynamic
5. Competition Between Rating Agencies
6. Equilibrium Computation
7. Comparative Statics
8. Conclusion
Cash flows follow a Geometric Brownian motion process

$$d\delta_t = \mu \delta_t dt + \sigma \delta_t dB_t,$$

where $\mu$ is the drift and $\sigma$ is the diffusion.
Cash flows follow a Geometric Brownian motion process

\[ d\delta_t = \mu \delta_t dt + \sigma \delta_t dB_t, \]  

(2)

where \( \mu \) is the drift and \( \sigma \) is the diffusion.

Unique equilibrium in closed-form:

\[ \delta_B^* = \frac{\gamma_1(r - \mu)}{(\gamma_1 + 1)r} \hat{C}, \]  

(3)

where

\[ \hat{C} = \sum_{i=1}^{l} \left[ \left( \frac{1}{h_{i+1}} \right)^{-\gamma_2} - \left( \frac{1}{h_i} \right)^{-\gamma_2} \right] c_i. \]
Optimal default boundary $\delta_B$

Parameters: $r = 0.06$, $\mu = 0.02$, $\sigma = 0.25$, $c_1 = 1.5$, $c_2 = 1$, $G = 2\%$. 

Rating transition threshold $H$
Mean-Reverting Cash Flows

Cash-flow process $\delta$ follows a mean-reverting process with proportional volatility:

$$d\delta_t = \lambda(\mu - \delta_t)dt + \sigma \delta_t dB_t$$ \hspace{1cm} (4)

where $\lambda$ is the speed of mean reversion, $\mu$ is the long-term mean earnings level to which $\delta$ reverts, and $\sigma$ is the volatility.
Mean-Reverting Cash Flows

Optimal default boundary $\delta_B$

Rating transition threshold $H$

Parameters: $r = 0.06$, $\lambda = 0.15$, $\mu = 1$, $\sigma = 0.4$, $c_1 = 1.3$, $c_2 = 0.75$, $G = 21\%$. 
Outline of the Talk

1. The Model
2. Equilibrium in Markov Strategies
3. Social Welfare and Equilibrium Selection
4. Stability and the Credit-Cliff Dynamic
5. Competition Between Rating Agencies
6. Equilibrium Computation
7. Comparative Statics
8. Conclusion
Comparative Statics

Proposition: The equilibrium default boundary $\delta_B$ and rating transition thresholds $H$ associated with the tough-rating-agency equilibrium and the soft-rating-agency equilibrium are

1. increasing in the coupon payments $C$.
2. increasing in the interest rate $r$.
3. decreasing in the drift $\mu(\cdot)$ of the cash flow process.
4. decreasing in the target rating transition thresholds $G$. 
Outline of the Talk

1. The Model
2. Equilibrium in Markov Strategies
3. Social Welfare and Equilibrium Selection
4. Stability and the Credit-Cliff Dynamic
5. Competition Between Rating Agencies
6. Equilibrium Computation
7. Comparative Statics
8. Conclusion
Conclusion

▶ Tractable model of credit ratings with feedback effects.

▶ Feedback effects lead to multiple equilibria, all with accurate ratings.

▶ Rating agencies should not only be concerned about accuracy, but also with the survival of the issuer (stress-tests vs issuer-pay model).

▶ Small shocks may lead to multi-notch downgrades or immediate default, even if the rating agency pursues an accurate rating policy.

▶ Competition between rating agencies may create downgrade pressure, increasing default frequency and reducing welfare.