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Riassunto: Il lavoro presenta una rassegna dei metodi di inferenza fondati sull’uso di
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1. Introduction

The empirical distributions of financial time series differ substantially from distribu-
tions obtained from sampling independent homoskedastic Gaussian variables. Uncondi-
tional density functions exhibit leptokurtosis and skewness; time series of stock returns
show evidence of volatility clustering; and squared returns exhibit pronounced serial cor-
relation whereas little or no serial dependence can be detected in the return process itself.
These empirical regularities suggest that the behaviour of financial time series may be
captured by a model which recognizes the time varying nature of return volatility, as fol-
lows:

yt = µt + y∗t εt, εt ∼ IID(0, 1), t = 1, 2, ..., T

whereyt denotes the return on an asset. One way of modellingy∗t is to express it as a
deterministic function of lagged residuals. Econometric specifications of this form are
known as ARCH models and have achieved widespread popularity in applied empirical
research (Bollerslevet al. (1992); Bollerslevet al. (1993); Bera and Higgins (1993)).
Alternatively, volatility may be modelled as an unobserved component following some
latent stochastic process, such as an autoregression. Models of this kind are known as
stochastic volatility (SV) models (Taylor (1994); Ghyselset al.(1996); Shephard (1996)).

SV models turn out to be more appealing for many reasons: broad general features
of the data can be reproduced (persistent volatility, volatility clustering effect, leverage
effect, asymmetries and leptokurtosis), fewer parameters have to be estimated, and gener-
ally they are closed under temporal aggregation. Despite their intuitive appeal, SV models
have been used less frequently than ARCH models in empirical applications. This is due
to the difficulties associated with their estimation. Unlike ARCH models, where the like-
lihood function can be evaluated exactly, the likelihood function of a SV model is hard to
construct.

SV models are examples of the general class ofparametric dynamic latent variable
models(also called factor models or state space models). These models are becoming
increasingly popular because of the flexibility they offer in the modelling of complex



phenomena, such as financial phenomena. Unfortunately, inference in this class of models
may be difficult, because the likelihood function appears as a multivariate integral the
size of which is equal to the number of observations multiplied by the size of the latent
variables. The complexity of these models is such that generic latent variable techniques,
like the Expectation Maximisation algorithm, do not apply, and they almost invariably
call for simulation based methods.

The aim of the paper is to survey the literature on simulation based methods for the
general class of parametric dynamic latent variable models, with particular attention to
applications to SV models.

The paper is organised as follows: section 2 presents the setup, i.e. the general class
of dynamic latent variable models and the SV models. Section 3 describes the simulation
based approaches and section 4 concludes.

2. Dynamic latent variable models

Dynamic latent variable (DLV) models jointly specify a sequence(yt) of time depen-
dent variables and a sequence(y∗t ) of partially unobserved variables1. Typically, yt and
y∗t satisfy {

y∗t = r∗t (y
∗t−1, yt−1, ε∗t ; θ) ,

yt = rt(y
∗t, yt−1, εt; θ) ,

(1)

where theε∗t ’s andεt’s are independent white noises2, with marginal distributions which
may depend onθ. Let y∗t andyt denote(y∗1, ..., y

∗
t ) and(y1, ..., yt), respectively.

There are serious difficulties in computing the likelihood function, in fact we have3:

f(yT , y∗T ; θ) =
T∏

t=1

f(yt|yt−1, y∗t; θ)f(y∗t |yt−1, y∗t−1; θ)

and the likelihood function is:

`T (θ) ≡ f(yT ; θ) =
∫ T∏

t=1

f(yt|yt−1, y∗t; θ)f(y∗t |yt−1, y∗t−1; θ)
T∏

t=1

dy∗t (2)

which is an integral whose size is equal to the number of observations multiplied by the
dimension of the unobserved variables, and thus it is practically unfeasible.

In the literature of the last forty years, several solutions have been proposed for the
estimation of this class of models. They can be subdivided into three groups: exact re-
cursive methods; approximated solutions; simulation based methods. The first category is
certainly the more attractive, but it is the narrower. In fact, only in the Gaussian and linear
case, with the Kalman filter, and in the Markovian and discrete case, with the Hamilton
filter, it is possible to obtain an exact recursive algorithm to compute the likelihood func-
tion. Examples of the second type are the extended Kalman filter (Anderson and Moore
(1979), Harvey (1989)), Fridman and Harris (1998)), the Gaussian sum filter (Sorenson

1For sake of simplicity, exogenous (explanatory) variables are not mentioned explicitly, although they
can be introduced at little cost.

2In this class of models there is no well-defined reduced form and therefore it is, in general, impossible
to compute the conditional p.d.f.f(yt/yt−1; θ).

3If (yT , y∗T ) has p.d.f. with respect to some measure(µ⊗ µ∗)⊗
T

.



and Alspach (1971)), the numerical integration (Kitagawa (1987)), the Monte Carlo inte-
gration (Tanizaki and Mariano (1994), Tanizaki and Mariano (1998)) or the particle filter
(Gordonet al. (1993)), Kitagawa (1996)), Pitt and Shephard (1999)). The last category
of methods is the more time consuming and computing demanding, but it is definitely the
more general. In the following we will focus on this type of approach.

2..1 Stochastic volatility models

For sake of simplicity, in the presentation we focus on stochastic volatility models, which
are defined by: {

y∗t = mt(y
∗t−1, yt−1; θ) + σt(y

∗t−1, yt−1; θ)ε∗t ,
yt = exp(0.5 y∗t )εt,

(3)

where{ε∗t} and{εt} are independent scalar white noises (see Taylor (1994), Ghyselset al.
(1996), Shephard (1996)). The most classical example of (3) is the basic model:{

y∗t = a + by∗t−1 + cε∗t ,
yt = exp(0.5 y∗t )εt,

(4)

whereε∗t andεt are normal independent white noises; the inequality constraints−1 <
b < 1 andc > 0 ensure thatyt is stationary and ergodic.

An attractive feature of specification (4) is the possibility of linearizing the model. By
taking logarithms of the squared mean adjusted data we obtain:{

y∗t = a + by∗t−1 + cε∗t ,
ln(y2

t ) = y∗t + ηt, ηt = ln(ε2
t )

(5)

If the original mean equation disturbance,εt, is standard normal,ηt follows the log-
arithm of aχ2

1 distribution, whose mean and variance are known to be -1.27 andπ2/2.
Harveyet al. (1994) suggested a Quasi-Maximum Likelihood (QML) method of estimat-
ing the model based on the Kalman filter. In fact, assuming joint conditional normality
of (ε∗t , ηt), equation (5) represents the measurement and transition equations of a general
linear state space model.

3. Simulation based methods

In the last ten years, simulation4 based methods propose several ways of resolving the
inference problem for this class of models (see Billio (1999)). In fact, it is clear that one
can easily recursively simulate (path simulations) from the system (2) for any given value
of parameters,θ.

A first approach relies on simulation based methods which are relatively simple to im-
plement, but which are less efficient than the maximum likelihood (ML) approach: see,
for example, the Simulated Method of Moments (Duffie and Singleton (1993)), the Sim-
ulated Pseudo-Maximum Likelihood Method (Laroque and Salanié (1993)), the Indirect
Inference Method (Gouriérouxet al.(1993)) or the Efficient Method of Moments (Gallant

4Simulation techniques make use of sequences of pseudo-random numbers which are generated by a
computer procedure.



and Tauchen (1996), Gallantet al. (1997)). A second approach considers the problem of
the computation (or of the approximation) of the likelihood and then of the ML estima-
tor through importance sampling methods (Danielsson and Richard (1993), Durbin and
Koopman (1997)). In a Bayesian framework, a third approach considers Markov Chain
Monte Carlo (MCMC) techniques based on the data augmentation principle, which yields
samples out of the joint posterior distribution of the latent variable and all model param-
eters, and allows the parameter estimates and the latent factors dynamics to be obtained
(Jacquieret al. (1994), Kimet al. (1998), Chibet al. (2002)). Finally, a fourth approach
utilizes MCMC methods in order to compute (or approximate) the maximum likelihood
estimator (see the Simulated EM (Shephard (1993) and Geyer (1994), Geyer (1996), Bil-
lio et al. (1998)).

Let us introduce part of these methods and their application to stochastic volatility
models.

3..1 Non efficient simulation based methods

The so-called Indirect Inference methodology was recently introduced in the literature
by Smith (1993), Gouriérouxet al. (1993), Gallant and Tauchen (1996), for a simulation
based inference on generally intractable structural models through an auxiliary model,
conceived as easier to handle. This methodology allows the use of somewhat misspecified
auxiliary models, since the simulation process in the well-specified structural model and
the calibration of the simulated paths against the observed one through the same auxiliary
model will provide an automatic misspecification bias correction. There are several ways
of implementing this idea5.

The original approach is the Indirect Inference (II) Method of Gouriérouxet al.(1993).
Consider an auxiliary modelfa(yt|yt−1; β) for the observed data (for example6 the gen-
eral linear state space model represented by equations (5)). Letβ̂T = BT (yT ) denote the
QML estimator ofβ based onfa as a functionBT (·) of the observed data setyT . The II
estimator of structural parametersθ minimizes[β̂T−β̃ST (θ)]′W [β̂−β̃ST (θ)] whereW is a
weight matrix and̃βST (θ) is theβ estimator obtained on a simulated path for a given value
of θ (i.e. is given by the binding functioñβST (θ) = limS→∞BST (ỹST ), which is approxi-
mated byBST (ỹST ) for largeS). This approach may be very computationally demanding
as one needs to evaluate the binding functionβ̃ST (θ) for each value ofθ appearing in the
numerical optimisation algorithm.

The estimator of Gallant and Tauchen (1996) circumvents the need to evaluate the
binding function by using the score vector(∂/∂β)fa(yt|yt−1; β) (score generator) to de-
fine the matching conditions. If the auxiliary modelfa(yt|yt−1; β) is chosen flexibly with
a suitable nonparametric interpretation, then the estimator achieves the asymptotic effi-
ciency of maximum likelihood and has good power properties for detecting misspecifi-
cation (Gallant and Long (1997), Tauchen (1997), hence the term Efficient Method of
Moments (EMM). EMM delivers consistent estimates of the structural parameter vector
under weak conditions on the choice of the auxiliary model. However, extrapolating from

5For all these methods, it is necessary to recycle the random numbers used in the calculation whenθ
changes, in order to have good numerical and statistical properties of the estimators based on these simula-
tions.

6Another possible auxiliary model is an ARMA(p,q) on the logarithms of the squared mean adjusted
data (see Monfardini (1998)).



the Generalised Method of Moments evidence, it is natural to conjecture that the quality
of inference may hinge on how well the auxiliary model approximates the salient features
of the observed data. This intuition is formalized by Gallant and Long (1997), who show
that a judicious selection of the auxiliary model, ensuring that the quasi-scores asymptot-
ically span the true score vector, will result in full asymptotic efficiency. In fact, as the
score generator approaches the true conditional density, the estimated covariance matrix
for the structural parameter approaches that of maximum likelihood7.

Andersenet al.(1999) perform an extensive Monte Carlo study of EMM estimation of
a stochastic volatility model. They examine the sensitivity to the choice of auxiliary model
using ARCH, GARCH, and EGARCH models for the score as well as nonparametric
extensions. EMM efficiency approaches that of maximum likelihood for larger sample
sizes, while inference is sensitive to the choice of auxiliary model in small samples, but
robust in larger samples8.

Another possible approach is the Functional Indirect Inference Method proposed by
Billio and Monfort (1999). In order to capture the dynamic features of the structural
model, the binding functions are conditional expectations of functions of the endogenous
variables given their past values and they are estimated by nonparametric kernel tech-
niques. Unlike the II method, no optimisation step is involved in the computation of the
binding function and it is useful when no convenient auxiliary model is available. In
spite of the non parametric feature of the approach, the estimator is consistent and its
convergence rate is arbitrarily close to the classical parametric one. Moreover, since the
asymptotic variance-covariance matrix can be chosen arbitrarily small by increasing the
number of conditional expectations considered, the method has potentially good finite
sample properties.

However, the Indirect Inference theory crucially depends on the correct specifica-
tion assumption concerning the structural model. There is now an emerging literature
(see, for example, Dridi and Renault (2000) and Dridi (2000)) which focuses on proce-
dures more robust to the structural model specification. In particular, Dridi and Renault
(2000) propose an extension to the Indirect Inference methodology to semiparametric
settings and show how the Semiparametric Indirect Inference works on basic examples
using SV models. Finally, Dridi (2000) proposes a general econometric theory, the Sim-
ulated Asymptotic Least Squares, which provides a unifying theory for simulation based
inference methods and nests all the above mentioned approaches, both in parametric and
semiparametric settings.

3..2 Simulated Maximum Likelihood methods

As previously seen with equation (2), the likelihood function naturally appears as the

expectation of the function
T∏

t=1

f(yt|yt−1, y∗t; θ) with respect to the p.d.f.P defined by9

7This result embodies one of the main advantages of EMM, since it prescribes a systematic approach to
the derivation of efficient moment conditions for estimation in a general parametric setting.

8Care must be taken, however, to avoid overparameterization of the auxiliary model, as convergence
problems may arise if the quasi-score is extended to the point where it begins to fit the purely idiosyncratic
noise in the data.

9It is important to note that this p.d.f. is neitherf(y∗T ; θ), except if yt does not causey∗t , nor
f(y∗T

∣∣yT ; θ).



T∏
t=1

f(y∗t |yt−1, y∗t−1; θ), from which it is easy to recursively draw. Therefore, an unbiased

simulator of the whole likelihood functioǹT (θ) is
T∏

t=1

f(yt|yt−1, ỹ∗st(θ); θ) whereỹ∗st(θ)

are drawn from the auxiliary p.d.f.P .
This basic simulator may be very slow, in the sense that the simulator may have a very

large variance and then some accelerating technique is needed. One solution is to consider
the general method of importance sampling based on a sequence of conditional p.d.f.’s
q(y∗t |yT , y∗t−1). Let us denote this probability distribution byQ and the corresponding
expectation byEQ. We have:

`T (θ) = EP

[
T∏

t=1

f(yt/y
t−1, y∗t)

]
= EQ

[
T∏

t=1

f(yt/y
t−1, y∗t)f(y∗t /y

t−1, y∗t−1)

q(y∗t /yT , y∗t−1)

]
(6)

Therefore, an unbiased simulator of`T (θ) is:

T∏
t=1

f(yt/y
t−1, ỹ∗st)f(ỹ∗st /yt−1, ỹ∗s(t−1))

q(ỹ∗st /yT , ỹ∗s(t−1))
,

whereỹ∗sT is drawn inQ. The problem is then how to choose the importance function:
the natural answer is by reducing the Monte Carlo variance. It is easy to calculate the

theoretical optimal choicef(y∗T |yT ; θ) =
T∏

t=1

f(y∗t |y∗t−1, yT ; θ) (i.e. the smoothing den-

sity of the latent variable), for which one simulation is sufficient, but it is clearly not
computable. Then it is possible to: consider the smoothing density of an approximat-
ing model; fix a parametric family of importance functions and choose the member that
minimizes the Monte Carlo variance (which is eventually computed in an approximated
way). For the SV model (4), the first solution is proposed by Sandmann and Koopman
(1998) by using as approximating model the linearised version (5). In the aim of the
second solution, Danielsson and Richard (1993) propose a sequentially optimized impor-
tance sampling, which Danielsson (1994) applies to the SV model. In both cases the SML
estimates of model parameters are obtained by numerical optimization of the logarithm
of the simulated likelihood10.

3..3 The Bayesian approach

In the Bayesian setting there are also serious difficulties. In general, the posterior density
f(θ|yT ) and the posterior expectation ofθ cannot be computed in a closed form. Again,
this complex setting requires a simulation based approach. The data augmentation prin-
ciple, which considers the latent variable as nuisance parameters, and the utilisation of
Gibbs sampling (Gelfand and Smith (1990), by iterating simulations fromf(y∗T |yT , θ)
(data augmentation step) and f(θ|yT , y∗T ) (parameter simulation step), allow simula-
tion from the joint posterior distributionf(y∗T , θ|yT ), derivation of the distribution of
interest as the marginal distribution ofθ and approximation of the posterior expectation

10As for non efficient methods, numerical and statistical accuracy is obtained by recycling the random
numbers used in the calculation for each parameter value.



by a sample average. When conditional distributions cannot be directly simulated, the
corresponding steps in the Gibbs algorithm are replaced by Metropolis-Hastings steps11.
Moreover, the prior modeling on the parameters is usually quasi non-informative.

The first Bayesian analysis of the basic SV model was provided by Jacquieret al.
(1994) where the posterior distribution of the parameters was sampled by MCMC meth-
ods using a one-move approach (i.e. the latent variablesy∗t was sampled each at time from
(y∗t |yT , y∗−t, a, b, c), wherey∗−t denotes all the elements ofy∗T excludingy∗t ). Although
this algorithm is conceptually simple, it is not particularly efficient from a simulation per-
spective, as is shown by Kimet al. (1998), who develop an alternative, more efficient,
multi-move MCMC algorithm. The efficiency gain in the Kimet al. (1998) algorithm
arises from the joint sampling ofy∗T in one block conditioned on everything else in the
model. Finally, Chibet al.(2002) develop efficient Markov Chain Monte Carlo algorithms
for estimating generalized models of SV defined by heavy-tailed Student-t distributions,
exogenous variables in the observation and volatility equations and a jump component in
the observation equation.

3..4 A MCMC approach to maximum likelihood estimation

Although the Bayesian approach is straightforward to state, it requires the elicitation of
a prior, which is often regarded by some econometricians as being difficult in dynamic
models. Even if this is not an insurmountable problem, alternatives are available which
allow us to perform maximum likelihood estimation using MCMC methods.

The first possibility is the Simulated Expectation Maximisation (SEM) algorithm pro-
posed by Shephard (1993). The EM algorithm exploits the following decomposition of
the log likelihood function:

log f(yT ; θ) = log f(yT , y∗T ; θ)− log f(y∗T |yT , ; θ)

= E
[
log f(yT , y∗T ; θ)|yT

]
− E

[
log f(y∗T |yT , ; θ)|yT

] (7)

and iterates:
θi+1 = arg max

θ
Eθi

[
log f(yT , y∗T ; θ)|yT

]
(8)

This is an increasing algorithm such that the sequenceθi converges to the ML esti-
mator. The problem is that, althoughlog f(yT , y∗T ; θ) has in general a closed form, the
same is not true for its conditional expectation. In the SEM algorithm this expectation is
replaced by an approximation based on simulations. Thus, the problem is now to be able
to draw in the conditional distribution ofy∗T given yT andθ. Shephard (1993), in the
context of a nonlinear state space model, uses the Hastings-Metropolis algorithm to solve
this problem and applies it to the SV model.

Another possible approach is the Simulated Likelihood Ratio (SLR) method proposed
by Billio et al. (1998). The general principle is:

f(yT ; θ)

f(yT ; θ̄)
= Eθ̄

[
f(y∗T , yT ; θ)

f(y∗T , yT ; θ̄)

∣∣∣∣yT

]
(9)

whereθ̄ is an arbitrary fixed value of the parameters. Obviously,

arg max
θ

f(yT ; θ) = arg max
θ

f(yT ; θ)

f(yT ; θ̄)

11Such hybrid algorithms are validated in Tierney (1994).



and withy∗T (s), s = 1, ..., S, simulated paths in the conditional distributionf(y∗T |yT , θ̄),
the SLR method amounts to maximising:

1

S

S∑
s=1

f(y∗T (s), yT ; θ)

f(y∗T (s), yT ; θ̄)

with respect toθ. The method can be implemented by simulating in the conditional dis-
tribution12 f(y∗T |yT ; θ̄). As already noted, it is impossible to simulate directly in this
distribution, thus a Hastings-Metropolis approach is suggested.

Contrary to the SEM approach, the SLR method allows for the computation of the
likelihood surface and then of likelihood ratio test statistics; it needs only one optimisation
run and not a sequence of optimisations; it is possible to store the simulated paths, and
then only one simulation run is required. Moreover, as the simulation is made for only
one value of the parameter, the objective function will be smooth with respect toθ, even
if simulations involves rejection methods.

4. Conclusions

We survey the literature on simulation based methods for the general class of DLV
models. In practice, the choice between these different simulation based approaches de-
pends on several criteria, such as efficiency and computing time. Unfortunately, in general
there is a trade off between these criteria.

Methods like SML and SLR, have several advantages in the estimation of DLV mod-
els. Since they are likelihood method, the classical theory of maximum likelihood carries
over to the simulated case and standard likelihood ratio tests can be constructed. MCMC
based approaches are certainly more time consuming but also allow estimation of the
latent variable dynamics by simulating from the smoothing/posterior distribution ofy∗T .

Following Billio et al. (2001), eventually a two step estimator, which is asymptoti-
cally efficient and simple to implement, could be considered: the first step is based on
a consistent estimator easy to compute, while the second step is a single iteration of a
Newton Raphson optimisation, where the first and second derivatives are obtained by a
simulation approach based on relationships between the likelihood function, which is not
computable, and the complete likelihood functionf(y∗T , yT ; θ), which is in general easily
computable. The method is also applied to the SV model (4).
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